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The paper presents studies on the application of the boundary integral equation method
for investigation of dynamic stress state of foam media with tunnel cavities in Cosserat
continuum. For the solution of the non-stationary problem, the Fourier transform for
time variable was used. The potential representations of Fourier transform displace-
ments and microrotations are written. The fundamental functions of displacements and
microrotations for the two-dimensional case of Cosserat continuum are built. Thus,
the fundamental functions of displacement for the time-domain problem are derived as
the functions of the two-dimensional isotropic continuum and the functions, which are
responsible for the effect of shear-rotation deformations. The method of mechanical
quadrature is applied for numerical calculations. Numerical example shows the compar-
ison of distribution of dynamic stresses in the foam medium with the cavity under the
action of impulse load accounting for the shear-rotation deformations effect and without
accounting for this effect.

Keywords: Cosserat elasticity, fundamental functions, time-domain problem, stresses
concentration.

1. Introduction

Many modern studies are devoted to the creation of new granular and foam compos-
ite materials that are widely used. The main advantages of such materials include
low thermal conductivity, low density (up to 50 kg/m3), long service life, and resis-
tance to aggressive environments.

https://doi.org/10.2478/mme-2018-0058
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The using of the classical theory of elasticity for studying of the stress state of
such materials, especially under the dynamic loads, leads to significant differences
between theoretical and experimental results. This is explained by the fact that
the solid model, which forms the basis of the classical theory of elasticity, does not
allow to show such properties of real bodies, which are determined by their discrete
structure.

Accounting for such properties it is necessary to use other models, where the
properties determined by the discrete structure would be clearly reflected. Investi-
gation of the stress state for these models is carried out not only accounting for the
force stresses, but also couple stresses.

The existence of couple stresses in materials was initially postulated by Voyght in
1887. However, in 1909 the brothers Cosserat were the first developers of the mathe-
matical model for the analysis of materials with couple stresses. In the original
Cosserat theory, the kinematic quantities were displacements and microrotations in
the medium. Hypothetically thought that the microrotation could be independent
of the mechanical rotation of the whole medium, called macrorotation.

Due to the complexity of the solution of equilibrium or motion equations in
the Cosserat elasticity, analytical solutions were constructed only for some classes
of problems. Pal’mov V.A. solved the problem of the stress concentration near
a circular hole [2]. Sandru N. and Mindlin R.D. obtained a solution to the problem
of the action of concentrated force and the concentrated moment in an infinite
elastic space [3].

The wave processes in micropolar continua are investigated in the monographs
of Eringen A.C. [4], Erofeev V.I. [5], Maugin G.A. [6] and Nowacki W. [7].

The model of Cosserat continuum is used to describe polycrystalline and com-
posite materials, granular and powder-like materials, porous media and foams, and
even bones.

Many works are devoted to the development of experimental methods for de-
termining the elastic characteristics of such materials within the framework of the
Cosserat continuum: material of human bone, foam and fibrous materials. Among
such works should be noted a significant number of works Lakes R. S., among which
[8-10] and other authors.

Therefore, in the paper the Cosserat continuum [1] is used to study the dynamic
be-havior of micropolar continuum.

2. Constructive relations

According to [1, 4], the motion equations of Cosserat continuum are described as:

σji,j +Xi = ρüi (1)

ϵkjiσij + µjk,j + Yk = Jϕ̈k (2)

where σji is the force stress, µji is the couple stress, ρ is the material density,
X = {Xi} is the mass forces vector, Y = {Yi} is the couple forces vector, J is
the inertia of unit volume rotation, ϵklm is the permutation symbol, ϕ = {ϕi} is
the displacement vector, X = {Xi} is the rotation vector. Functions u and ϕ are
continuous functions.
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Here and further the Einstein summation convention is used. A comma at
subscript denotes differentiation with respect to a coordinate indexed after the
comma, i.e. uj,i = ∂uj/∂xi.

Under the condition of plane strain indices vary from 1 to 2, and k = 3.
According to [1], the dependencies for determining force and couple stresses are

written as:
σji = (µ+ α)γji + (µ− α)γij + λγkkδij
µji = (γ + ε)κji + (γ − ε)κij + βκkkδij

(3)

where α, β, γ, κ are the elastic constant required to describe an isotropic con-
strained Cosserat elastic solid, λ, µ are Lame parameters, γij = ui,j − ϵkjiϕk is
the asymmetric deformation tensor, κij = ϕi,j is the torsion bending tensor.

3. Boundary integral formulation

Let’s consider a micropolar elastic medium with tunnel cavity of sufficiently small
diameter, that a plane strain condition is satisfied (Fig. 1). We denote a configu-
ration of micropolar elastic medium by Ω and the boundary of tunnel cavity with
constant cross-section by L. The center of gravity is placed at the origin of Cartesian
coordinate system x1Ox2x3.

Figure 1 Model of the research object

The boundary conditions for the second exterior problem in Cosserat elasticity
are written as:

σn|L = −σ0φ( t), τsn|L = 0, µn|L = 0 (4)

where φ(t) is the function that describes an impulse load, which is applied to the
cavity’s boundary in radial direction, n is the normal to the boundary of the cavity,
σ0 is the constant, which dependents on the intensity of the applied load. The
function φ(t) is given at the boundary L.

The impulse load over time is given as:

φ(t̃) = p∗t̃
n∗e−α∗ t̃, t̃ > 0, n∗ ≥ 0 (5)

where t̃ = t · cl/a is a dimensionless time parameter, cl =
√
(λ+ 2µ)/ρ is the speed

of expansion wave, p∗, n∗, α∗ are the constants, a is some characteristic scale. For
numerical calculations the value of characteristic scale is chosen as a = a1 · 103m.
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3.1. Potential representation of displacements and microrotations

Applying the Fourier transform to the motion equations (1) and (2), we obtained
the equations, which are equivalent to the equations of time-harmonic motion with
cyclic frequency ω:

σ̂ji,j + X̂i + ω2ρûi = 0 (6)

∈ijk σ̂ij + µ̂mk,m + Ŷk + ω2Jϕ̂k = 0 (7)

Here σ̂ji, µ̂mk, X̂i, Ŷk, ûi, ϕ̂k are Fourier transforms of force and couple stresses,
mass and force forces, displacements and microrotations accordantly.

According to the boundary element method [11] the Fourier transform of the
boundary conditions for the second exterior problem in Cosserat elasticity are writ-
ten as:

pi|L = σ̂jinj |L = pi
mk|L = µ̂jknj |L = mk

(8)

According to weighted residual approach [12] we are interested in minimizing
equations (6) and (7). To this end one can weight equation (6) by displacement
type function u∗

i and weight equation (7) by microrotation type function ϕ∗
k with

accounting for the boundary conditions (8):∫
Ω

(
σ̂ji,j + X̂i + ω2ρûi

)
u∗
i dΩ =

∫
L

(pi − pi)u
∗
i dL (9)

∫
Ω

(
∈ijk σ̂ij + µ̂mk,m + Ŷk + ω2Jφ̂k

)
ϕ∗
kdΩ =

∫
L

(mk −mk)ϕ
∗
kdL (10)

If we carry out integrated by parts on the first term of equation (9) and the
second term of equation (10), and group the corresponding terms together, and
accounting for the asymmetric deformation tensor, we can write the potential rep-
resentation for transforms of displacements and microrotations:

ûi =

∫
L

pj · U∗
ij dL+

∫
L

mk · Φ∗
kj dL+

∫
Ω

Xj · U∗
ij dΩ+

∫
Ω

Yk · Φ∗
kj dΩ (11)

ϕ̂k =

∫
L

pj · U∗∗
kj dL+

∫
L

mk · Φ∗∗
kk dL+

∫
Ω

Xj · U∗∗
kj dΩ+

∫
Ω

Yk · Φ∗∗
kk dΩ (12)

where U∗
ij , U∗∗

kj , Φ∗
kj , Φ∗∗

kk are the fundamental functions for displacements and
mictrorotations, pj, mk are unknown potential functions.

3.2. Fundamental functions for displacements and mictrorotations

The fundamental functions U∗
ij , U∗∗

kj , Φ∗
kj , Φ∗∗

kk for Cosserat continuum are built
regarding Sommerfield radiation condition. We use methods of potential theory
[13] and collocation methods [12]. For the plane stain the motion equations (6) and
(7) via displacement and microrotations are written as:

(λ+ µ)∂1θ̂ + µ∆û1 − α∂2(∂1û2 − ∂2û1) + 2α∂2ϕ̂3 + X̂1 + ρω2û1 = 0 (13)

(λ+ µ)∂2θ̂ + µ∆û2 + α∂1(∂1û2 − ∂2û1)− 2α∂1ϕ̂3 + X̂2 + ρω2û2 = 0 (14)
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(γ + ε)∆ϕ̂3 + 2α(∂1û2 − ∂2û1)− 4αϕ̂3 + Ŷ3 + Jω2ϕ̂3 = 0 (15)

We differentiate the equations (14) by x1 and the equation (13) by x2 and sub-
tract them. Then we substitute the obtained equation in the equation (15). The
equation for determining the microrotations in the Cosserat continuum is obtained
in form:

∆∆ϕ̂3 − p∆ϕ̂3 − qϕ̂3 = − 1

l23

(
−∂1X̂2 + ∂2X̂1

ρc22
+

(∆− κ2
2)

2α
Ŷ3

)
(16)

where:
l3 =

√
(γ + ε)/2µ is the scale parameter in Cosserat elasticity,

c2 =
√
(µ+ α)/ρ is the speed of shear wave in Cosserat elasticity.

Applying the collocation method [12] to solving equation (16) and inserting the
obtained solutions into the equations (13) – (15) we can write the fundamental
functions for displacements and mictrorotations as:

U∗
ij = A0K0(κτr)δij +A1∂i∂j (K0(κlr)−K0(κτr))+

(∆δij − ∂i∂j) (a0K0(κτr) + a1K0(κ1r) + a2K0(κ2r))
(17)

U∗∗
kj = (−1)j+1∂j+1 (α0K0(κτr) + α1K0(κ1r) + α2K0(κ2r)) (18)

Φ∗∗
kj = A0A1(−1)j+1∂j+1 (K0(κ1r)−K0(κ2r)) (19)

Φ∗∗
kk = A0A2 (b3K0(κ1r)− b4K0(κ2r)) (20)

where κl = Iω/cl,κτ = Iω/cτ ,κ1 = Iω/v1, κ2 = ω/v2 are the wave numbers, cτ =√
µ/ρ is the speed of shear wave in classical elasticity, v1, v2 are the wave speeds

in Cosserat elasticity, which are obtained as a solutions of characteristic equation of
(16), Km(r) are Bessel functions of the third kinds, r =

√
(x1 − x0

1)
2 + (x2 − x0

2)
2is

the distance, I is imaginary number, Ak, ak, αk, bm are the known constants, k=1,
2, 3; m=3, 4.

Performing the analysis of the obtained fundamental function (17) for the dis-
placements one can write:

U∗
ij = U

∗(class)
ij + U

∗(coupl)
ij

where U
∗(class)
ij are the fundamental functions of the classical elasticity. It is selected

for non-stationary loads as [14]:

U
∗(class)
ij =

1

2πµ

(
K0(κτr)δij +

1

κ2
τ

∂i∂j (K0(κlr)−K0(κτr))

)
According to formula (17), the expression for part of the fundamental functions

in the Cosserat elasticity U
∗(coupl)
ij , which accounting for the influence of shear

rotation deformations, we write as:

U
∗(coupl)
ij = (∆δij − ∂i∂j) (a0K0(κτr) + a1K0(κ1r) + a2K0(κ2r))

From the above it is clear that from the formulas (17) - (20) for zero values of
some constant, one can obtain solutions for the classical elasticity as a partial case.
This will enable to verify the reliability of the results, which are obtained on the
basis of the developed method, with known results in the literature.
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3.3. Novel integral equations for the second exterior problem in Cosserat
elasticity

For the solving of the problem one must determine unknown functions p1, p2, m3.
The calculation of the force and couple stresses at an arbitrary point of the plate is
performed by the formulas [15]:

σ̂n =
σ̂11 + σ̂22

2
+

1

4

(
e−2Iα (σ̂11 − σ̂22 + I(τ̂12 + τ̂21))

+ e2Iα (σ̂11 − σ̂22 − I(τ̂12 + τ̂21))
)

τ̂sn =
τ̂12 − τ̂21

2
+

i

4

(
e2Iα (σ̂11 − σ̂22 − I(τ̂12 + τ̂21)) (21)

− e−2Iα (σ̂11 − σ̂22 + I(τ̂12 + τ̂21))
)

µ̂n =
1

2

(
(µ̂31 − Iµ̂32) e

Iα + (µ̂31 + Iµ̂32) e
−Iα

)
where α is the angle between the normal n to the boundary of the plate and the
axis Ox1.

For plane strain the components of force and couple stresses are defined by the
formulas, which are the analogies of Hooke’s law in Cosserat elasticity [1].

Inserting the potential representation of displacements (11) and microrotations
(12) to the force and couple stress formulas (21) with accounting for (17) – (20) we
obtain the integral dependencies for absent of mass and couple forces:

σ̂n =

∫
L

(
f1
(
x, x0

)
p1 + f2

(
x, x0

)
p2 + f3

(
x, x0

)
m3

)
dL(x0)

τ̂n =

∫
L

(
g1
(
x, x0

)
p1 + g2

(
x, x0

)
p2 + g3

(
x, x0

)
m3

)
dL(x0) (22)

µ̂n =

∫
L

(
G1

(
x, x0

)
p1 +G2

(
x, x0

)
p2 +G3

(
x, x0

)
m3

)
dL(x0)

where fm, gm, Gm are known functions, which contain Bessel function of third
kind.

Integration of functions fm, gm, Gm for the small value of argument leads to
the singularity. To establish their characteristic we used the asymptotic expressions
for Bessel function of the third kind for small values of the argument.

Let’s apply the approach, which is developed in [16] for the time-domain prob-
lem of classical theory of elasticity. For the determination of the unknown functions
p1. p2, m3 we satisfy the Fourier transforms of boundary condition (4) and apply
Plemelj-Sokhotski formulas for the limits, when internal point tends to the bound-
ary. We obtain the system of integral equations:

Re (q)

2
+ v.p.

∫
L

(
f1
(
x, x0

)
qdζ + f2

(
x, x0

)
q̄dζ̄ + f3

(
x, x0

)
m3dL

)
= −σ0ϕ̂(ω) (23)

Im(q)

2
ϑ1 + v.p.

∫
L

(
g1
(
x, x0

)
qdζ + g2

(
x, x0

)
q̄dζ̄ + g3

(
x, x0

)
m3dL

)
= 0 (24)
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m3

2
I + v.p.

∫
L

(
G1

(
x, x0

)
qdζ +G2

(
x, x0

)
q̄dζ̄ +G3

(
x, x0

)
m3dL

)
= 0 (25)

where pdL = −Iqdζ, p = p1 + Ip2 is the unknown complex function, ζ = x0
1 + Ix0

2,
ϑ1 =

(
1− (α/µ)2

)
is the constants. Here the integrals are understood in the sense

of Cauchy principal value.
The algorithm [16] was applied to the numerical solving of the system of integral

equations (23) – (25). It is used method of mechanical quadrature method.

4. Dynamic stress calculation

Calculations of the hoop stress transforms on the boundary and the radial stress
transforms in the medium are performed by formulas [1]. Substituting in these
formulas the potential representations for displacements (11) and microrotations
(12), selecting irregular parts and completing limit transition the transforms of
the hoop stresses on the boundary and the radial stresses inside the medium are
received:

σ̂θ =
Re(q)

2
ϑ2 + v.p.

∫
L

(
h1

(
x, x0

)
qdζ + h2

(
x, x0

)
q̄dζ̄ + h3

(
x, x0

)
m3dL

)
σ̂r = v.p.

∫
L

(
h4

(
x, x0

)
qdζ + h5

(
x, x0

)
q̄dζ̄ + h6

(
x, x0

)
m3dL

)
where hk = hk(x, x

0) are known functions, ϑ2 is the constant (ϑ2 = ν/(1 − ν) for
plane strain).

Modified discrete Fourier transform is used for calculation of originals of the
dynamic hoop and radial stresses [17].

5. Numerical example

Using the developed method, we investigate the dynamic stress state of a the
medium with the tunnel cavity under the action of the impulse load, which is
applied to the cavity’s boundary in radial direction. The center of gravity is placed
at the origin of Cartesian coordinate system x1Ox2.

The impulse load over time is given in form (6) for p∗ = 272, n∗ = 2, α∗ = 10.
The calculations are performed for the dimensionless time parameter t̃ ∈ [0, 8].

In [8] it was shown the experimental results of studying of the following mate-
rial properties of closed-cell polymethacrylimide foam: Young’s moduli, Poisson’s
ratios, yield strengths, and characteristic lengths associated with inhomogeneous
deformation.

For numerical calculations we use the elastic constants, which is obtained [8],
required to describe isotropic Cosserat elastic solid. For polymer foam the values
of elastic constants has chosen as: the initial density is ρ = 380 kg/m3, Poisson’s
ratio is ν = 0.13, Young’s modulus is E = 637 · 106 Pa, elastic characteristic of
Cosserat continuum: α = 2.85 · 106 Pa, ϵ = 494 N, γ = 182 N, l3 = 10.8 mm,
a1 = 2.02, J = 9.12·10−4 g/cm.

Distribution of the relative hoop stresses on the boundary of the circular cavity
of radius R = 10 mm. A curve 1 is plotted without accounting for the effect
of shear-rotation deformations (basic on motion equations of classical elasticity)
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by the method [14]. Curve 2 is plotted for Cosserat elasticity with constrained
microrotations (couple stress elasticity) by the method [18]. Curve 3 is plotted by
the modified in this work method. Curves 2 and 3 are plotted with accounting for
the effect of the shear-rotation deformations, which arise in the medium under the
action of the impulse load.

Numerical calculations for the case of couple stress elasticity, which are based
on method [18], are performed for the same values of elastic characteristics. The
value of characteristic length l in couple stress elasticity for polymer foam is chosen
as l = lt = 0.78 mm [8].

Figure 2 Relative hoop stresses on the boundary of the cavity in polymer foam

Fig. 2 shows that the maximum value of the dynamic hoop stresses on the cavity‘s
boundary in the foam medium is higher by 11.5% for the case of Cosserat elasticity
and by 13% for the case of couple stress elasticity. Therefore, dynamic hoop stresses
are higher with accounting for the influence of the shear-rotation effect than without
accounting for this effect.

Numerical results, which are obtained for Cosserat elasticity and couple stress
elasticity, practically coincide. This is explained by the fact that the values of the
microrotations of the medium points at the boundary of the cavity practically coin-
cide with the values of the macrorotations of the medium for the case of distribution
non-stationary load.

In addition, accounting for the influence of shear-rotation deformation allows
describing more accurately the dynamic stress state of the foam medium behind
the propagating wave. So, in the medium, there are also fields of compressive stress
that arise behind the propagating wave. Such results can not be described on the
basis of the classical theory of elasticity. But they are consistent with the basic
principles of wave mechanics.
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For the case of polymer foam media with smaller values of elastic characteristics
behind the propagating impulse wave, the hoop dynamic stresses on the boundary
of foam medium have wave-shaped character [18].

The numerical calculation results of relative radial stresses at distances of
δ = 2.5 R (curve 1) δ = 5 R (curve 2), δ = 10 R (curve 3), δ = 15 R (curve 4) to
the cavity center in a polymethacrylimide foam medium are shown in Fig. 3. Here
the dashed curves correspond to the radial stresses in the foam medium without
accounting for the influence of the shear-rotation deformations (which are obtained
basic on motion equations of classical elasticity), and the continuous curves corre-
spond to the stresses, which are calculated including of the influence of the shear-
rotation deformations (which are obtained basic on motion equations of Cosserat
elasticity). Numerical calculations of radial stresses without consideration of couple
stresses are performed based on [14].

Fig. 3 shows that the maximum value of dynamic radial stresses in the foam
medium are higher by 8-14% with accounting for the influence of the shear-rotation
deformations (for Cosserat elasticity) than without accounting for this effect (for
classical elasticity). Same results were obtained for the case of couple stress elasticity
in [18].

Figure 3 Relative radial stresses in the polymer foam with tunnel cavity

The accuracy of the proposed approach is ensured by the agreement of the results
with the basic principles of wave mechanics. Thus, the values of the relative radial
stresses are zero until a wave of the corresponding cross section is reached.

6. Discussion

Numerical calculations confirm that using of the equations of the Cosserat elasticity
for the study of the dynamic stress state of foam materials allows accounting for not
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only the influence of shear-rotation deformations but also more accurately describe
the dynamic stress state of the medium.

The displacement and microrotations in the medium can be calculated by the
formulas (11) and (12) using the modified approach. Based on the values of dynamic
stresses and displacements, the analysis of the propagation of non-stationary process
in the foam materials can be carried out.

Thus, the approach, which is modified in the work, allows investigating of non-
stationary wave processes in structurally inhomogeneous media.
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